If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(J)=-5J^2+50J
We move all terms to the left:
(J)-(-5J^2+50J)=0
We get rid of parentheses
5J^2-50J+J=0
We add all the numbers together, and all the variables
5J^2-49J=0
a = 5; b = -49; c = 0;
Δ = b2-4ac
Δ = -492-4·5·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$J_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$J_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$J_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-49}{2*5}=\frac{0}{10} =0 $$J_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+49}{2*5}=\frac{98}{10} =9+4/5 $
| 4e=1000 | | 3(-4)=5b-2 | | 9x-19=7x+89 | | x=-0.1x(x-180) | | 1/4+x=-5/4 | | 5x-4(x-3)=13-2x | | 7.2(2x+8)=-9.3 | | 6x+2(5x-3)=12x | | 12x+2(5x-3)=12x | | 2x²+5x+3-2x²+5x-3=10 | | 12x+4(5x-3)=12x | | 2(x-8)+9=23 | | 96/x+10=4x-10 | | 0=-16t^2-54t+7 | | 4b+12=120 | | -3(x-7)=30 | | 8y+17=10y-1 | | 3(5+2x)=-18 | | 1/2(x)-6=12 | | 5/n=16n5=16 | | -3{x-7}=30 | | n5=16n5=16 | | -2(7+5x)=-8x-18 | | 9y+12=93 | | x/4+13=-6 | | 4x-6=41 | | 2^3x=14 | | 2x+140+x+140=180 | | 2x+140=x+140 | | 4a+5=3 | | Y=0.5x+-1.5 | | 14x+11=4x-19 |